On the Global Existence for the Axisymmetric Euler Equations
نویسندگان
چکیده
This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in some critical Besov spaces.
منابع مشابه
Axisymmetric Euler-α Equations without Swirl: Existence, Uniqueness, and Radon Measure Valued Solutions
The global existence of weak solutions for the three-dimensional axisymmetric Euler-α (also known as Lagrangian-averaged Euler-α) equations, without swirl, is established, whenever the initial unfiltered velocity v0 satisfies ∇×v0 r is a finite Randon measure with compact support. Furthermore, the global existence and uniqueness, is also established in this case provided ∇×v0 r ∈ L c (R) with p...
متن کاملOn Finite Time Singularity and Global Regularity of an Axisymmetric Model for the 3D Euler Equations
We investigate the large time behavior of an axisymmetric model for the 3D Euler equations. In [22], Hou and Lei proposed a 3D model for the axisymmetric incompressible Euler and Navier-Stokes equations with swirl. This model shares many properties of the 3D incompressible Euler and Navier-Stokes equations. The main difference between the 3D model of Hou and Lei and the reformulated 3D Euler an...
متن کاملOn the Global Well-posedness for the Axisymmetric Euler Equations
This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in critical Besov spaces B 1+3/p p,1 . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity.
متن کاملExistence of Axisymmetric Weak Solutions of the 3-d Euler Equations for Near-vortex-sheet Initial Data
We study the initial value problem for the 3-D Euler equation when the fluid is inviscid and incompressible, and flows with axisymmetry and without swirl. On the initial vorticity ω0, we assumed that ω0/r belongs to L(logL(R3))α with α > 1/2, where r is the distance to an axis of symmetry. To prove the existence of weak global solutions, we prove first a new a priori estimate for the solution. ...
متن کاملSelf-similar Singularity of a 1d Model for the 3d Axisymmetric Euler Equations
We investigate the self-similar singularity of a 1D model for the 3D axisymmetric Euler equations, which approximates the dynamics of the Euler equations on the solid boundary of a cylindrical domain. We prove the existence of a discrete family of self-similar profiles for this model and analyze their far-field properties. The self-similar profiles we find are consistent with direct simulation ...
متن کامل